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The NPDGamma studies weak interaction between neusih protons in
the n+p - d+y 2(2MeV) reaction. The experiemt will measuré\ , the
parity-violating asymmeyrin the distribution oémittedy's
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PV - signature of the weak interactjan the strong

Interaction parity is caerved.

Expected asymmetrx, = - 5 x 16°

Goal experimental errog 0.5 x 16

A, Is a clean measurement pf}Tsince

2-body system - nouclear structure uncertainties
A,= -0.045 Hj




Weak Interaction

Standard model specifies well how pdike leptons and quarks
interacting weakly by exchaimg a weak boson\/*, W, 79, ....

We do not have a good pictuof the weak interaction betweesdnons.

The strong interaction hiis nucleons together to fmmuclei, and is thus
the primary interactiobetween protons and neutsoiNucleon
Interactions take place on a scald/of = 1.5 fm, short rage repulsion.

The masses of the weak bosons are lardararefore their Compton
wavelengths are in range dM,, = 103 fm which is very small comped
to the distances characterizing lonwesgy N-N interactions

At low energies weak interaction between nogte
cannot be explained bysampleZ or W - exchange.
The picture is complicated Isgrong interaction.

The ratio of weak and strg amplitudes is 4nG_n. /g%, =107




Low-EnergyHadronicWeak Interactional=1 neutral current coponent

« At low energiedhadronicweak interaction can be consideesda point
Interaction of two cuents; the charged and nalitweak currents

G + +
HW :\—/%(‘JW‘JW +‘JZ‘JZ) = HL + HSL + HNL (AS:1)+ HNL (AS:O)

 Fromisospinstructure of the weak interactiéor strangeness conserviAg
= 0 part is obtained:

— Charged current wedk-N interaction components af¢ = 0 and 2 but
not tAl = 1.
— Neutral currents components dtie= 0, 1, 2.
[0 The neutral current shouttbminate thesospinAl = 1 channel.

[JA,in h+p - d+y Is ameasure of thE5= 0, Al = 1 part of théhadronic
weak interaction and thus naltcurrent part of the taraction.

The main goals of the expaents are:

 to isolate the neutral cemt and

e to understand the mechsm by which the weak force is
communicated overdhong distances #™-N interactions.




The Low-EnergyN-N Weak Interaction: one-meson exchange modi

The low-energyWN-N weak interaction is conventialty
described in a one - mesoaxchange model, where
one meson - nucleon vex is weak and the other

strong. This long - distanceathanism dominates at

nuclear densities. N PV
The six weakPV couplings: \/

1 0 1 1 2 0 1
HIHO,HL, HE H2, H HE

|
characterize the strengths of : P00
ISovector ,
Isoscalar/isovectdsotensoip /Pz:\
Isoscalar/isovectan N

weak meson-nucleon couplsg
Measured in various comlations by a variety of
observables

A, = —O.O45H}T Thete carries the important long-ramgart of thenadronic
weak interaction, just as it s for the strong interaction




Simple Level Diagram afi-p System; n+p - d+y is primarily
sensitive to thél = 1 component of thweak interaction

Low-energy ‘ 3SfL’| =0
continuum states

‘133] :1> \3P0,| :1>

Boundstates Mixing amplitudes:

\3§,|:o> ‘3P1,I:1> ‘1P1,I:O>

<351 Viy 3P1>;AI =1
« Weak interaction mixes iR waves to thaingletand 3 1o\ At
. L . < S My P1>,AI—O
tripletSwaves in initial and final states.
« Parity conserving transitioa M1. <1S) Vv 3F’o>;AI =2
 Parity violation arises frommixing in P states and
Interference of thE1 transitions.

* A, is coming fron?S - P, mixing and interferencefo
E1l-Mltransitions Al = 1 channel.
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Then+p - d+y Experimentis Designed for
LANSCE Pulsed Col&pallationNeutron Source

A *4

The goal experimental eirof

0.5 x 1® is a challenge for a polaed
cold neutron fluxrMom aspallation
source as well as for the contrél o
systematic errors.

— Some 4 x 10 neutrons are
required for statistics.

— Neutron time-of-fligh used to
design the experiment with
systematic errors less than

0.5 x 16,

2
Neutron current (x10 ° neutrons/ms/cm /pulse)

the

7

Neutron current at the end of a 24.3 m long
guide with 150 pA proton current

/

\

N\

N

10

20 30 40 50

Time of Flight (ms)

60

The flight path 2 at LANSCE has a peak flux 2x10’ n/cn¥/s at about 8eV.
Neutron pulse rate is 248z — TOF frame = 50 ms.

To reach the statistics of 0.8.&8 eight months forunning is reded.




NPDGamma Experimental Setup

Transverse Magnetic Field
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Neutrons Polarized by Optically-Polarizétde Spin Filter

P =tanh[nlo (E,)P,]
T =T’ cosh[nl o,(E,)P.]

P(1-(T"/ )92

3He neutron spin filter:

* In a3He cell Rb atoms are polarized b
laser light. Through spin eRangeHe
gas is nuclear polarized.

e Cross section of the #He singletstate
IS much larger than thagtet state.

 Therefore, neutrons with spin
antiparallelwith *He spins are absorbe
and neutrons with spin paraligith SHe
spins are transmitted neutron spin
filter

y
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SHe Spin-Filter Setup

A 11-cm in diameter cell has> 500
hr. 3He polarization 52% has been

measured.

Large area, 11 cm in digHe cells are
required to cover thieeam.

3He spin filter allows a compact
experimental setup.

3He spin filter offers an extra ispflip _
' : 100 W lightat 7
without a change of thfield. 00 W lightat 795 nm




RF Neutron Spin Flipper: spin reversal in
broad neutron energy range

« Neutron spin is guide byB, = 10 gauss field.

 Magnetic gradients has to be smauss/cm - no
SternGerlach steering- false asymmetry

 RF spin flipper (RFSF) is the main control of
systematic errors. Spin flip at B{Z.

» Magnetic field fluctuations less th@0 mgauss
e Spin reversal with a RF field.
— E, in is proportional to /{tof)?
— At resonance a tilt angle of the sBr© = yB,At
— To precess a neutron spin ®y= 1t
B,= (ri_yd_(_tof)
— Spin-flip efficiency > 9%6 achieved.

Other spin flips are guide fietat 3He poalrization




RF Spin Flipper; spin-flip efficiency

= ZmeV

= 4 meV

= B meV

~¥— 12 meV

Harizontal otfset (inches)



20-liter Liguid Para-Hydrogen Target

To maintain neutron spin
scattering gara hydrogen targesi
required.

The 30 cm in diameter ar3® cm
long target captures 60% ioCident
neutrons.

At 17 K only 0.05% of LHis in <
orthostate- 1% of incident
neutrons will be depolarized.
Target cryostat materials selected [so
that false asymmetries <10 10

102,

capture\

Neutron mean free paths am&Vin
- ortho-hydrogen is\ = 2 cm,

- para-hydrogen i = 20 cm

- for an-p capture i\ = 50cm.

10 10
E {(meV)

-3



A safe 20-liter Liquid Para-Hydrogen Target




CslI(Tl) Gamma Detector

Up-downy — asymmetry will be measuref

The detector has to be aligneth theB,
guide field better than®2mrad

Csl(Tl) was selected because of :
— large number of pitoelectrons,
measured >1009EV y-ray

— Interaction length of a.2-MeV y-ray
in Csl is about 5 cms 95% ofy's will
be stopped in 15 cm.

The gamma detector has @81 modules -
15 x 15 x 15 cr Total of 0.7 metric toof
CsI(TI).

.

48 Csl(Tl) detectors have bee
received and are undesting.




CslI(Tl) Gamma Detector
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Current Mode Detection with Vacuum Photo Diodes

Rates are about 19/s - current mode detectio

Light from CsI(Tl) is detected by 3” vacuupiotodiodes which have S2
photocathodes

— vacuum photodiode learity < 16 and

— magnetic field sensitivity < 10G and < 16/G?
Vacuum photodiode has a gaihl - a high-gain low-noisé - V
preamplifier is required

In the current moddetection statistical fluctuations (cdung statistics)
appear as a shot noise in pluidale current.

RMS of the shot noise current densﬁy‘nonyT_, 2g1 = npev2xrate =
N

5 pANHz per detector.

0



Counting gatisticsvs electrical wise

Sources of noise; Johnson nois&incurrent and voltagnoises in the

op amp input, anghotocathodelark current

If R =60 MQ then the total calculated eqalent noise at the input is

19fA/vVHz dominated byR..
Noise value measured from tbiecuit is about 26A/VHz.
— oounting statistics/noise 250.
Counting statistics rules the run time.
To measure beam-off &8 asymmetry to 0.5 x $0beam-off time of

L4

a few minutes is needed.




n+p->d+y Experiment Layou

ISO-ROTATED WORK



Systematic Errors

Physics - correlated with neutrgpin: o
— activatedmaterials - emiys in3-decay Erod cios Somrs Aoyrat|
— Stern-Gerlaclsteering 10®
- L'R asymmetry -Statistical E-err
e n-pelastic scattering "0 e
* n - p parity allowed asymmetry o T o
« Mott-Schwingerscattering " \ <y
Instrumental sources . N ——
— electronicsstray magnetifields, gain Nl
Stablhty 1o ! Systematic Errors
Monitoring: ' e barity ol nppGamma | T
1o | | . EEJ?’auznmeaa aca i E
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Summary

Then+p - d+y eaction is the most sensitive way to isolatemblwlal
current component ithe hadroniaveak interaction and to detgine Hy; .

With pulsed cold neutrors, can be measured with the statisticaqmion
of 5 x 16°

— Insitu control of systematic em® by TOF information.

Then+p - d+y prriment will uséHe neutron spin filter, RF spin
flipper, and currentnode detection.

Commissioning of the experent will start in spring 2003.
An interesting follow-up expanent could beh+d - t+y .







